Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J King Saud Univ Sci ; 34(6): 102147, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1936836

ABSTRACT

Various protein/receptor targets have been discovered through in-silico research. They are expanding rapidly due to their extensive advantage of delivering new drug candidates more quickly, efficiently, and at a lower cost. The automation of organic synthesis and biochemical screening will lead to a revolution in the entire research arena in drug discovery. In this research article, a few fungal metabolites were examined through an in-silico approach which involves major steps such as (a) Molecular Docking Analysis, (b) Drug likeness and ADMET studies, and (c) Molecular Dynamics Simulation. Fungal metabolites were taken from Antibiotic Database which showed antiviral effects on severe viral diseases such as HIV. Docking, Lipinski's, and ADMET analyses investigated the binding affinity and toxicity of five metabolites: Chromophilone I, iso; F13459; Stachyflin, acetyl; A-108836; Integracide A (A-108835). Chromophilone I, iso was subjected to additional analysis, including a 50 ns MD simulation of the protein to assess the occurring alterations. This molecule's docking data shows that it had the highest binding affinity. ADMET research revealed that the ligand might be employed as an oral medication. MD simulation revealed that the ligand-protein interaction was stable. Finally, this ligand can be exploited to develop SARS-CoV-2 therapeutic options. Fungal metabolites that have been studied could be a potential source for future lead candidates. Further study of these molecules may result in creating an antiviral drug to battle the SARS-CoV-2 virus.

2.
J Biomol Struct Dyn ; 40(1): 348-360, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1597295

ABSTRACT

The novel SARS-CoV-2 is the etiological agent causing the Coronavirus disease 2019 (COVID-19), which continues to become an inevitable pandemic outbreak. Over a short span of time, the structures of therapeutic target proteins for SARS-CoV-2 were identified based on the homology modelled structure of similar virus, SARS-CoV that transmitted rapidly in 2003. Since the outset of the disease, the research community has been looking for a potential drug lead. Out of all the known resolved structures related to SARS-CoV-2; 3-chymotrypsin (3 C) like protease (3CLpro) is considered as an attractive anti-viral drug compound on the grounds of its role in viral replication and probable non-interactive competency to bind to any viral host protein. To the best of our knowledge, till date only one compound has been identified and tested in-vitro as a potent inhibitor of 3CLpro protein, addressed as N3 (PubChem Compound CID: 6323191) and is known to bind irreversibly to 3CLpro suppressing its activity. Using computational approach, we intend to identify a probable natural fungal metabolite to interact and inhibit 3CLpro. Here after performing docking and molecular dynamics of various small molecules derived as a secondary metabolite from fungi, we propose Flaviolin as potent inhibitor of 3CLpro of novel Coronavirus SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Fungi , Humans , Molecular Docking Simulation , Naphthoquinones , Protease Inhibitors , SARS-CoV-2
3.
Mol Divers ; 26(1): 309-329, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1171933

ABSTRACT

The non-structural protein (nsp)-3 of SARS-CoV2 coronavirus is sought to be an essential target protein which is also named as papain-like protease (PLpro). This protease cleaves the viral polyprotein, but importantly in human host it also removes ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from interferon responsive factor 3 (IRF3) protein which ultimately downregulates the production of type I interferon leading to weakening of immune response. GRL0617 is the most potent known inhibitor for PLpro that was initially developed for SARS outbreak of 2003. The PLpro of SARS-CoV and CoV2 share 83% sequence identity but interestingly have several identical conserved amino acids that suggests GRL0617 to be an effective inhibitor for PLpro of SARS-CoV2. GRL0617 is a naphthalene-based molecule and interacts with Tyr268 of SARS-CoV2-PLpro (and Tyr269 of SARS-CoV-PLpro). To identify PLpro inhibitors, we prepared a library of secondary metabolites from fungi with aromatic nature and docked them with PLpro of SARS-CoV and SARS-CoV2. We found six hits which interacts with Tyr268 of SARS-CoV2-PLpro (and Tyr269 of SARS-CoV-PLpro). More surprisingly the top hit, Fonsecin, has naphthalene moiety in its structure, which recruits Tyr268 of SARS-CoV2-PLpro (and Tyr269 of SARS-CoV-PLpro) and has binding energy at par with control (GRL0617). Molecular dynamics (MD) simulation showed Fonsecin to interact with Tyr268 of SARS-CoV2-PLpro more efficiently than control (GRL0617) and interacting with a greater number of amino acids in the binding cleft of PLpro.


Subject(s)
COVID-19 Drug Treatment , Molecular Dynamics Simulation , Aniline Compounds , Benzamides , Fungi/metabolism , Humans , Molecular Docking Simulation , Naphthalenes , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/metabolism , RNA, Viral , SARS-CoV-2
4.
Biophys Chem ; 264: 106425, 2020 09.
Article in English | MEDLINE | ID: covidwho-634721

ABSTRACT

The novel SARS-CoV-2 is the etiological agent causing the Coronavirus disease 2019 (COVID-19), which continues to become an inevitable pandemic outbreak. Over a short span of time, the structures of therapeutic target proteins for SARS-CoV-2 were identified based on the homology modelled structure of similar SARS-CoV transmission of 2003. Since the onset of the disease, the research community has been looking for a potential drug lead. Out of all the known resolved structures related to SARS-CoV, Main protease (Mpro) is considered an attractive anti-viral drug target on the grounds of its role in viral replication and probable non-interactive competency to bind to any viral host protein. To the best of our knowledge, till date only one compound has been identified and tested in-vivo as a potent inhibitor of Mpro protein, addressed as N3 (PubChem Compound CID: 6323191) and is known to bind irreversibly to Mpro suppressing its activity. Using computational approach, we intend to identify a probable natural fungal metabolite to interact and inhibit Mpro. After screening various small molecules for molecular docking and dynamics simulation, we propose Pyranonigrin A, a secondary fungal metabolite to possess potent inhibitory potential against the Main protease (Mpro) expressed in SARS-CoV-2 virus.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/enzymology , Protease Inhibitors/chemistry , Pyrones/chemistry , Pyrroles/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Betacoronavirus/pathogenicity , Binding Sites , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Drug Discovery , Gene Expression , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2 , Sequence Homology, Amino Acid , Thermodynamics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
5.
Molecules ; 25(8)2020 Apr 14.
Article in English | MEDLINE | ID: covidwho-71998

ABSTRACT

The inhibition of viral protease is an important target in antiviral drug discovery and development. To date, protease inhibitor drugs, especially HIV-1 protease inhibitors, have been available for human clinical use in the treatment of coronaviruses. However, these drugs can have adverse side effects and they can become ineffective due to eventual drug resistance. Thus, the search for natural bioactive compounds that were obtained from bio-resources that exert inhibitory capabilities against HIV-1 protease activity is of great interest. Fungi are a source of natural bioactive compounds that offer therapeutic potential in the prevention of viral diseases and for the improvement of human immunomodulation. Here, we made a brief review of the current findings on fungi as producers of protease inhibitors and studies on the relevant candidate fungal bioactive compounds that can offer immunomodulatory activities as potential therapeutic agents of coronaviruses in the future.


Subject(s)
Biological Products/pharmacology , Coronavirus/drug effects , Fungi/chemistry , Immunologic Factors/pharmacology , Protease Inhibitors/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Coronavirus/enzymology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Molecular Structure , Protease Inhibitors/chemistry , Protease Inhibitors/isolation & purification , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL